Under construction

Program: Lectures

Jason Alicea

Topological Qubits

Topological quantum computation aims to assemble scalable qubits that are intrinsically resilient to errors. The workhorse of a topological quantum computer are emergent particles dubbed “non-Abelian anyons” that are born in certain topological states of matter. I will survey the properties of non-Abelian anyons that underlie their utility for quantum computation, focusing largely on their manifestation in 1D and 2D topological superconductors. I will also discuss candidate experimental platforms, detection and manipulation strategies, topological qubit interrogation protocols, and future challenges and opportunities.  

Daniel Barredo

Rydberg atom arrays: expanding frontiers in quantum simulation, computation, and metrology

 Rydberg atoms in arrays of optical tweezers open up new horizons for quantum simulation, computation, and metrology. In these lectures, we will present an overview of this architecture. We will explore how individual atoms can be trapped and arranged, creating customizable arrays that serve as a versatile platform for various quantum applications. We will review the unique properties of Rydberg atoms, the mechanism of Rydberg blockade, and the methods to generate entanglement. These lectures will describe ongoing efforts in the community to implement different spin models with hundreds of particles for simulating quantum many-body phenomena. We will gain insight into the role of this platform in quantum computing, highlighting its ability to implement high-fidelity quantum gates and scalable quantum circuits. Furthermore, we will illustrate how entanglement in the out-of-equilibrium dynamics of these systems can be harnessed to generate scalable spin squeezing for metrological applications. Finally, we will provide perspectives on the future developments of Rydberg atoms arrays in the realm of quantum science and technology.

Harry Buhrman



Klemens Hammerer

Quantum variational optimization of optical atomic clocks

Employing entanglement to improve measurements limited by quantum noise is perhaps the first use case of a real quantum advantage. While this promise is already fulfilled in gravitational wave observatories, which nowadays routinely operate with squeezed states of light, other fields in quantum metrology are just beginning to profit from entanglement enhancement. In particular, the use of squeezed and, more generally, entangled states of atoms in frequency metrology and atomic clocks is under intense investigation, with experiments demonstrating significant gains in recent proof-of-principle realizations. In my lectures, I will introduce the general idea and the specific challenges of using entanglement in atomic clocks. I will also discuss the specific needs and requirements of optical atomic clocks, which use optical atomic transitions and are expected to replace the Cesium standard second within the next decade. Since optical clocks are realized with trapped ions or neutral atoms in tweezer arrays or optical lattices, they have much in common with atom-based quantum information processors. This motivates the consideration of frequency metrology protocols from the perspective of quantum variational optimization. 

Silvia Kusminskiy

Cavity Magnonics: Fundamentals and Applications

Cavity magnonic systems are ideally suited to explore the range of possibilities opened by tailoring the interactions between photons, phonons, and magnons. In these lectures I will go over the basic coupling mechanisms between these excitations for ferromagnetic and antiferromagnetic systems, and cover the concept of dynamical backaction. I will discuss possible applications such as the generation of quantum magnon states, transduction, and thermometry. 

Hannes Pichler

Chiral Quantum Optics


Seigo Tarucha

Spin Physics in Quantum Dots and Application to Spin-based Quantum Computing

Semiconductor quantum dots (QDs) provide a promising platform for application to spin-based quantum computing and study on quantum dynamics of single electron spins. Quantum coherence and entanglement are both fundamental concepts in quantum computing and utilized to construct quantum circuits. The circuit performance depends on spin dephasing and spin-spin interaction. In Part I of my lecture I will explain basics of spin-based quantum computing and underlying physics of single spins and spin entanglement. Control and detection of single spins and entanglement, dephasing of single spins due to interaction of magnetic environment, and quantum non-demolition measurement using two-spin entanglement are the major topics.
Then in Part II, I will address advances in spin-based quantum computing in silicon (Si) QDs. Spin qubits in Si QDs have several advantages, on the grounds of a long intrinsic decoherence time (> msec), a possible high temperature operation (> K), and compatibility in device fabrication with industrial technologies. Motivated by these advantages, enthusiastic effort has recently been made to improve the performance of qubit devices. I will review the progress including implementation of the high-fidelity qubit gates to satisfy the fault-tolerant threshold, quantum error correction and development of multi-qubit devices. 

Program: Talks

Deung-Jang Choi



Francisco Guinea

Electronic structure and electronic interactions in moiré systems


Atac Imamoglu

Electrically-defined quantum dots for excitons in two-dimensional semiconductors